Agrivoltaics The Water-Energy-Food Nexus

Tali Zohar

The Center for Renewable Energy and Energy Conservation, The Arava Institute

The Dead Sea and Arava Science Center

Global projections towards 2050

- 60% more food will need to be produced in order to feed the world population in 2050
- Global agriculture will withdrawals
 80% of all freshwater for irrigation
- Global energy consumption is projected to grow by 50% by 2035

OECD Linking land, water and energy

Impacts of nexus approach on SDGs

Liu, J., Hull, V., Godfray, H.C.J. *et al.* Nexus approaches to global sustainable development. *Nat Sustain* **1**, 466–476 (2018)

Dual-use of land

^{*} Miao R, Khanna M. 2020. Harnessing Advances in Agricultural Technologies to Optimize Resource Utilization in the Food-Energy-Water Nexus. Annual Review of Resource Economics, 12

The Joint Institute for Global Food, Water and Energy Security

Insights from AgriVoltaic research

Water demand reduction

Increased biomass production

Increase solar panels efficiency

Shade-intolerant crops growth feasibility

Crop growth

50% shade 100% shade Full sun

Off grid solutions

