

Introduction to Soil Sciences

3 weekly hours (one hour theoretical and two hours experimental) 3 academic credits

Overview

Soils form a unique and irreplaceable essential resource for all terrestrial organisms, including man. Soils form not only the very thin outer skin of the earth's crust that is exploited by plant roots for anchorage and supply of water and nutrients. Soils are complex natural bodies formed under the influence of plants, microorganisms and soil animals, water and air from their parent material, solid rock or unconsolidated sediments. Soil composition under variable conditions, usually differ strongly from the parent (parent = original) material, and normally are far more suitable as a rooting medium for plants.

In addition to serving as a substrate for plant growth, including crops and pasture, soils play a dominant role in the cycling of water, carbon, nitrogen and other elements, influencing the composition and turnover rates of substances in the atmosphere and the hydrosphere.

Specific Goals

Students who successfully complete this course will be able to:

- 1. Recall and define the basic terms used for the description, study, and management of soils.
- 2. Describe the soil forming factors and the effect of each factor on soil development.
- 3. Identify and describe soil physical properties such as texture, structure, and color.
- 4. Explain how soil properties and processes affect agricultural and nonagricultural land use and management.
- 5. Summarize the ecological functions of soil and explain the role of soil management in maintaining and improving environmental quality.

Laboratory

The laboratory will provide hands-on experience in a variety of soil analytical skills and illustrate soil science concepts. During the lab work, two sites will be sampled in 3 depths. Each group will analyze one sample from the oil spill flooded and one sample from the non-flooded site. In the field, general characteristics as color, moisture status, texture or carbonate content are estimated during sampling. The field moist samples are then homogenized, dried and sieved in the laboratory and water content (WC), pH and electrical conductivity (EC) of aqueous extracts and other results are to be determined in the laboratory. Each group will choose a project related to soil analysis and another field (agriculture, ecology, hydrology, geology, pollution, etc) and use the knowledge required in the lab, to do a series of analysis and write a report.

Course Requirements

The course will include laboratory and field work (soil sampling and field analysis), worksheets, exercises, readings, etc. In addition to participating in the lab and class discussions, students will have a midterm exam. The main reading of this course will be provided by the instructor.

Grade Components

- Attendance and Punctuality 15%
- Quizzes 10%
- Midterm exam 15%
- Laboratory work and reports 30%
- Final exam 30%

Course Schedule

#	Topics	Lab
1	The Earth's Crust Origin of Soil	Safety manual
	Terminology used in describing soils	Hand outs
	What is a Soil?	- Lab safety policy
	Soil definition	
	Components of soils	
2	What is soil genesis?	- Field experimental design
	Why study soil genesis?	- Interpreting Soil data and reporting
	How to study soil genesis?	
	N.van Breemen, P.Buurman - Soil	
	Formation. 2nd edition (pages 7 - 12)	
3	Definition and expression of soil acidity	Experimental setup
		- Soil sampling
		- Soil pH and Al
4	Definition and expression of soil salinity	Experimental setup
		- Soil EC
5	Soil texture, Soil structure,	Soil texture:
	Profile variability Soil Temperature and	a. soil type by feel and appearance method.
	Soil color, Particle Size Distribution (PSD)	b. Soil texture dry method - Sieving and
	1. N.van Breemen, P.Buurman - Soil	determination of coarse fraction.
	Formation. 2nd edition (pages 15 -26)	
	2. Soil Pollution: origin, Monitoring &	
	Remediation by Ibrahim A. Mirsal.	
	Second edition, 2004, page 47	
6	Organic pollutants in soil: remediation	Guest lecturer - Dr Ahmad Nasir
	in different soil types using analytical	
	methods	
7	M: 1	Standardization and calibration carve
	Mid-term exam	(Na and K minerals in soil)
		- Soil texture wet method
0	Cail amaniama and amaniamattan	- Soil Bulk Density
8	Soil Organisms and organic matter	
	Soil Organisms (types, functions,	Carbonate in soil
	processes such as nitrification,	NO3,
	ammonification,	P04,
	N-fixation).	S04
	Organic matter (definition, composition of	
0	plants, decomposition).	1 Mater Drev Description Time (MIDDT)
9	Sources of nutrients in soils	1. Water Drop Penetration Time (WDPT)
	(organic matter and soil minerals).	2. Drop Angle Contact test

	C:N ratio of materials returned to soil.	3. Critical Surface Tension (CST)
	Input of plant litter (Compost) and animal	
	manor into soils and nutrient cycling	
	within the soil profile	
	N.van Breemen, P.Buurman - Soil	
	Formation. 2nd edition	
10	Filed trip – to be determined	
	Soil moisture condition of a horizon (field)	
11	Soil Water Interaction.	Soil moisture (water) content (lab)
	Soil's Moisture Content.	Infiltration capacity
	Soil-Moisture Potential.	
	Water Flow in Saturated Soils	
	Principles of soil physics by Rattan Lal	
	and Manoj K. Shukla, 2004.page 234	
12	Flow in Unsaturated Soils.	Review
	Water Infiltration in Soil.	Lab and field Review
	Soil Water Evaporation.	
	Principles of soil physics by Rattan Lal	
	and Manoj K. Shukla, 2004.	
13	Final exam	

Text Book:

- Soil and the environment: An introduction by Alan Wild. First Edition, 1993. 1.
- Fundamentals of soil science by Henry D. Foth. Sixth edition, 1978. Principles of soil physics by Rattan Lal and Manoj K.Shukla, 2004. 2.
- 3.
- Soil Pollution: origin, Monitoring & Remediation by Ibrahim A. Mirsal. Second edition, 2004. 4.